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A B S T R A C T

This paper explores the effects of policies and other factors driving innovation in wind power technologies in
twelve OECD countries over more than two decades. Patent counts are used as an indicator for innovation. The
factors considered are generally derived from the systems of innovation literature. Count data econometric
model were used for the estimations. The suggest that patenting in wind power technology is positively related
to public R &D in wind power (reflecting supply-side policy), the stock of wind capacity (reflecting learning
effects), the number of patents per capita (reflecting a country's innovative capacity), and the share of Green
party voters (reflecting the legitimacy of the technology). In particular, the presence of production or capacity
targets for wind power or renewable energy sources and a stable policy environment (reflecting policy process)
appear to be favourable for patenting wind power technologies. These results are robust to various model
specifications, distributional assumptions, and alternative classifications of wind power technologies in the
patent search.

1. Introduction

Expanding renewable energy sources (RES) is considered to be a
key strategy for tackling climate change, preserving resources, and
securing energy supply. For example, the European Union (EU) has set
a binding target of 20% for the share RES in final energy consumption
in 2020. For 2030, this share is 27% and current debates focus on the
support of RES in the EU beyond 2020 (European Commission, 2015).
As a key component of decarbonising their power sectors, several
countries, including Denmark, France and Germany, have passed
energy transition laws”, which mandate a sharp increase in RES. To
achieve these targets innovation efforts may enhance performance and
help lower the costs of electricity generation from RES.

Policy support for innovation in RES technologies is typically
justified by positive technology and knowledge spillovers and by
RES's avoidance of external costs associated with the generation of
electricity from conventional sources (e.g. Rennings, 2000). Because of
these market failures, private innovation would be lower than socially
optimal without policy intervention. Since environmental policies also
act as demand-side innovation policies, more recent work calls for
innovation and environmental policies to be investigated jointly
(Horbach et al., 2012; Costantini and Crespi, 2013; del Río Gonzáles
and Peñasco, 2014). Complementary to approaches which justify policy
by market failures, the systems of innovation (SI) approach emphasizes

the need for systemic innovation policies to improve the functioning of
the innovation system and prevent “system failure” (Smits and
Kuhlmann, 2004; Lundvall and Borras, 2005; Klein Woolthuis et al.,
2013).

Only few studies have yet analyzed the impact of policies on
innovation in RES technologies based on large samples (Lee and Lee,
2013, p. 415). Notably, Johnstone et al. (2010) econometrically explore
the effects of public expenditures on research and development (R &D)
and of support mechanisms for RES on patenting in OECD countries
between 1978 and 2003. Yet, their analysis does not allow for other
policy factors which have been identified as impacting patenting. The
SI literature stresses the importance of specific innovation functions for
innovation, in particular. Policy can influence the functionality of an
innovation system by removing blocking and adding inducing mechan-
isms (Bergek et al., 2008a). In addition, the policy analysis literature
points to the role of target setting and policy stability for innovation
activities (e.g. Jänicke and Lindemann, 2010; Bergek et al., 2008a).

In this paper, we econometrically explore the factors driving
patenting activity in wind energy technologies, relying on data for
twelve OECD countries over the time span of 1991–2011. These factors
include supply-side policies such as technology-specific R &D, and
demand-side policies such as support mechanisms for electricity
generated by RES. Relying on the comprehensive functions of innova-
tion approach as a conceptual framework, we extend previous studies
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of patenting activities in RES power technologies - notably Johnstone
et al. (2010) - by also including factors derived specifically from the SI
and the policy analysis literatures, thereby complementing existing
case-study based approaches in the SI and policy analysis literatures.
We focus on wind energy because wind power is typically considered to
exhibit the largest future potential among RES power technologies
(IEA, 2014). Our sample also captures the more recent and also more
dynamic developments in wind power patenting since the late 1990s.
As a robustness check of our findings, we also allow for a more
comprehensive classification of patents in wind-power technologies
than previous studies.

Section 2 provides an overview of the literature and the conceptual
framework used. Section 3 presents the methodology, including a
description of the data, the variables, and the econometric approach.
Results are shown and discussed in Section 4. Section 5 summarizes
the main findings and offers policy implications.

2. Literature review

2.1. Conceptual framework

Since the 1990s, researchers have employed the SI heuristic to
study innovation activities. In particular, the technological innovation
systems literature has identified several functions that innovation
systems need to fulfil to spur innovation (e.g. Jacobsson and
Johnson, 2000; Smits and Kuhlmann, 2004; Hekkert et al., 2007;
Bergek et al., 2008a; Heckert and Negro, 2009). These functions may
be categorized as: creation and development of knowledge (F1);
creation of positive external economies via exchange of information
and knowledge between producers and along the value chain, including
user-producer interaction (F2); guidance of the search for new
technological solutions and markets (F3); creation of the legitimacy
of a new technology and counteracting resistance to change (F4);
facilitation of market formation (F5); supply of resources, especially for
new technologies with a high risk of failure (F6); and diversity in
experimentation and a variety of solutions (F7). These functions
overlap and involve interactions and feedback loops. Recognizing that
the actors who perform the functions respond to policies, the SI
approach encompasses the traditional demand-pull and technology-
push factors in a more systemic framework, but does not regard
innovation as a linear process.

The policy instruments discussed in the innovation policy literature
may affect the functionality of an innovation system by removing
mechanisms which block the actors performing functions, or by adding
mechanisms to support those actors. Supply-side regulation attempts
to affect the innovation process per se and contributes to the creation
and development of knowledge (F1). Traditional supply-side policies
include technology-specific measures such as subsidies for R &D for
particular technologies, cross-cutting policies such as the protection of
intellectual property rights, and the standardisation of products and
processes via norms (e.g. Blind, 2008). Subsidies for R &D, in
particular, provide resources for the actors creating knowledge and
developing new technologies (F1, F6) and facilitate the exchange of
information (F2). Technology-specific R &D support also provides
guidance of search (F3).

Demand for wind turbines is blocked, for example, because the
costs of generating electricity from fossil fuels do not reflect the
associated environmental damages so that electricity prices are lower
than socially optimal. In this case, domestic demand-side policies
enable market formation (F5) by providing support for production and,
thus, for investment in technologies which are less harmful to the
environment. There are various channels how this will foster innova-
tion (e.g. Lundvall, 1988; von Hippel, 1996; Edler and Georghiou,
2007): The interaction between users and producers of an innovation
transfers knowledge about preferences, customers and real-world
operation conditions from the market to the technology providers.

Thus, the exchange of knowledge (F2) is fostered. Furthermore,
learning-by-doing in the production process of the innovation and
utilizing economies of scale can improve product quality and drive
down costs. In addition, demand-side policies may lead indirectly to
the supply of resources (F6), as revenues from sales help to recover the
costs of innovations.

Demand-side instruments for RES include measures supporting
deployment such as feed-in tariffs (FITs), which make fixed payments
to electricity generators for each kWh of electricity supplied from RES.
Other support mechanisms include investment subsidies or tax ex-
emptions, production tax credits (PTCs), quota obligations for the
share of RES electricity generated or distributed, and tradable green
certificate (TGC) schemes. Higher support levels generate higher
profits which can then be used for additional innovation. By creating
sufficient demand, these mechanisms help establish markets for high-
cost RES technologies and overcome the technological fossil fuel lock-
in in the energy sector (F5) (Unruh, 2002). Most theoretical and
empirical studies consider market-based support mechanisms such as
TGCs, FITs or PTCs to have stronger effects on innovation than
command-and-control instruments like non-tradable obligations, since
the latter provide lower financial incentives to advance technologies
beyond the required standard (e.g. Jaffe et al., 1999). The thrust of the
literature further suggests that FITs are more conducive to diffusion
and innovation than TGC because they provide more predictable price
incentives for investors (e.g. Schmidt et al., 2012; Bergek and Berggren,
2014). Such investment security is particularly relevant for investors in
technologies like wind power, where capital costs account for a high
share of total generation costs (e.g. Kleßmann et al., 2013).1 FITs might
therefore lead to a higher level of innovation than other mechanisms
because they have a stronger effect on demand.

Similar to domestic regulation, foreign regulation may also enable
market formation (F5), which indirectly facilitates the supply of
resources (F6), user-producer interactions and learning effects (F2)
(e.g. Wagner, 2007; Wei Yingqi et al., 2008). Likewise, a greater
number of innovations may induce higher exports in the future,
reinforcing the positive relation between exports and innovation (e.g.
Fagerberg, 1988; Dosi and Soete, 1988; Sanyal, 2004; Madsen, 2008).

The SI literature stresses, in particular, the importance of learning,
of a country's innovative capacity, and of technology legitimacy for
innovation. Accordingly, learning-by-doing, learning-by-using, and
learning-by-interacting (user-producer interaction) (F2) lead to patent-
ing of new products and processes (e.g. Smits and Kuhlmann, 2004;
Lundvall, 1988; von Hippel, 1996). Learning effects are also linked
with market formation. In particular, incorporating user knowledge
into the design process may be conducive to innovation, allowing for
knowledge to spill over to domestic actors through various channels,
including “reverse engineering” in cases where technologies are
imported (e.g. Boon et al., 2011; Nahuis et al., 2012; Peine and
Hermann, 2012). Technology diffusion further signals commercial
opportunities for (potential) domestic technology producers and may
also stimulate domestic innovation activities eventually leading to
patenting. A country's higher scientific and technological know-how
also nurtures innovation activities by companies (F1) (e.g. Nelson,
1993). Finally, a higher perceived legitimacy of technology translates
into the greater market success of a new technological paradigm (F4).
Similarly, the greater potential and performance ascribed to a technol-
ogy facilitates legitimacy and increases further innovation activities
(Bergek et al., 2008b). A second aspect of legitimacy relates to the
power to change existing rules and institutions, e.g. via the ability to
influence public policy (Hekkert and Negro, 2009) and to challenge
existing technological regimes (Walz and Köhler, 2014).

The policy analysis literature stresses the importance of target

1 Capital costs account for about 80% of the levelized costs of wind power generation
(IRENA, 2012).
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setting and of the stability of the regulatory framework for innovation
in RES (e.g. Jänicke and Lindemann, 2010; Bergek et al., 2008a). Given
the time needed to bring innovations to the market, and the depen-
dence of market development on political measures, innovators are
deterred by prospects of stop-and-go policies (Nemet, 2009). Enacting
policy targets and ensuring a stable regulatory framework reduce this
blocking mechanism and support the functions of an innovation system
such as guiding innovative search processes (F3) and promulgating the
legitimacy of RES for innovation (F4) (e.g. Smits and Kuhlmann, 2004;
del Río Gonzáles and Bleda, 2012; Bergek and Berggren, 2014).
Likewise, the emerging policy mix literature stresses the need to
broaden the perspective and go beyond merely analysing the features
of single policy instruments (Rogge and Reichardt, 2016). Existing
empirical analyses rely almost exclusively on case study interviews
involving a limited number or actors. Case studies are well suited to
gain profound insights into complex decision-making processes and
structures within organizations, but their findings are usually limited to
an analytical generalization, where observed outcomes of decision-
making processes are explained by identifying the relevant causal
mechanisms (Yin, 1994, p. 45 f). But they have a weak basis for
generalizing the findings in a statistical sense. The low number of
observations does not allow for statistical inference.

2.2. Findings from econometric analyses

The few econometric studies exploring the impact of public policies on
innovation activities in technologies for RES employ country-level panel
data, and use patent counts over time as indicators for innovation.
Johnstone et al. (2010) focus on the effects of different support mechan-
isms by drawing on data for five RES in 25 OECD countries between 1978
and 2003. They find that FITs increase patenting activity in high-cost
technologies used in RES (i.e. solar), but not for more cost-competitive
technologies. FITs were found to negatively affect patenting in wind-power
technologies. For most specifications, patenting is not related to the support
levels per se, but to whether a policy is in place or not. In addition,
Johnstone et al. (2010) further find that public R&D boosts patenting in
wind-power. They further conclude that policies rather than electricity
prices are driving innovation in RES.

Costantini et al. (2015) draw on data from 36 OECD and non-OECD
countries between 1990 and 2010 to analyse the factors driving patenting
in biofuel-related technologies. Accordingly, public R&D and to a country's
innovative capacity increase patenting in biofuel technologie. They further
find patenting in mature technologies to be mainly related to demand-side
policies. In comparison, patenting for less-mature technologies is related to
supply-side and demand-side policies.

Johnstone et al. (2010) and Costantini et al. (2015) both focus on
the effects of the different types of support mechanisms, particularly on
FITs. In comparison, the impact of other demand-side factors has only
been explored in case studies, where identification of the effects was
difficult (e.g. Hekkert and Negro, 2009). The majority of empirical
studies explore the effect of support mechanisms on the deployment of
RES rather than on innovation, e.g. Polzin et al. (2015) or del Río
Gonzáles and Peñasco (2014).

Nesta et al. (2014) and Nicolli and Vona (2016) study the effect of
market liberalization on patenting for renewable technologies in EU
countries. Market liberalization enabled the entry of electricity suppli-
ers who typically relied on small, decentralized units such as wind
mills, thus challenging the incumbent utilities, which typically relied on
centralized fossil-fuel or nuclear units. The market entry of these new
suppliers increased the incentives for technology providers to innovate
in decentralized RES technologies. The results of Nesta et al. (2014)
and Nicolli and Vona (2016) confirm that reducing entry barriers
induces innovation. Analysing RES patenting activities in OECD and
non-OECD countries, Bayer et al. (2013) conclude that democratic
institutions spur patenting. They argue that democratic governments
are more likely than autocracies to provide public goods like infra-

structure or education for their citizens’ benefit, which in turn spur
patenting. Dechezleprêtre and Glachant (2014) explored the impact of
foreign policies on domestic innovation. Using wind power generation
abroad as a proxy for the demand-pull effects of foreign policies, they
conclude that patenting is positively related to foreign policies.

Our empirical study is closest to Johnstone (2010) and Costantini et al.
(2015). Like Johnstone et al. (2010), our analysis includes R&D expen-
ditures, and allows for different support mechanisms. Similar to Costantini
et al. (2015), we allow for learning effects and the country's innovative
capacity. In addition, and complementary to the case study analyses relying
on the SI and policy studies frameworks, our empirical model accounts for
other factors identified by the functions of innovation literature such as
technological legitimacy, target setting and the stability of the regulatory
framework. Our specification generally includes a broader set of explana-
tory and control variables than the extant empirical literature. The analyses
by Johnstone et al. (2010), Nesta et al. (2014) and Nicolli and Vona (2016)
use wind technology patents retrieved for the sub-class F03D, which relates
to the main focus of wind power plants such asmotors, masts and rotors. In
addition to also using F03D, we further employ a more comprehensive
classification, which comprises patents related to electric and electronic
components, for example.

3. Methodology

3.1. The case of wind power

Wind energy plays an important role for decarbonising the electricity
sector in many countries. By the end of 2015 about 432 GW of wind power
had been installed globally (GWEC, 2015), 176 GW in Asia, 148 GW in
Europe and 89 GW in North America. Until about 2006, the development
was driven by European countries, particularly Denmark and, later,
Germany and Spain. The markets in Asia exhibited high growth rates in
recent years, with an annual installed capacity of 34 GW in 2015. Since
2012, capacity growth in Europe has stabilized at about 11–14 GW per
year, and varied in North America between 3 and 15 GW. About 98% of the
globally installed wind capacity is onshore wind. Only about 12 GW of
offshore wind capacity had been constructed in 2015.

All large markets are strongly policy driven. The types and design of the
support mechanisms differ across countries over time.2 For example, the
US has traditionally implemented federal PTCs for power generated from
certain RES (including wind). In addition, several states have renewable
portfolio standards (RPS) in place. In the EU, wind energy was initially
driven by FITs introduced at the member-state level, e.g. in Denmark,
France, Germany, Portugal and Spain. Some countries, including Belgium,
Poland, Sweden and the UK, primarily relied on TGCs based on quota
obligations. Germany replaced its technology-neutral power purchase
agreements with a technology-specific FIT in 2000, specifying a fixed
remuneration level for 20 years. Since then, FITs have become the
dominant support mechanism in most countries, but design features differ
across countries. For example, Spain's FIT, in place from 1997 until 2012,
fixed the remuneration for only five years. Several countries have switched
mechanisms over time, primarily from FIT and TGC to feed-in premium
(FIP) systems. Germany, Italy, the Netherlands and the UK recently
introduced FIPs to improve compatibility with the electricity market.3 In
early 2014, the EU adopted the “Environmental and Energy State Aid
Guidelines for 2014–2020″ (European Commission, 2014), effectively
making FIPs based on bidding systems the central RES support mechan-
ism.

2 For further details we refer to the IEA ‘Renewable Energy Policies and Measures
Database’ (http://www.iea.org/policiesandmeasures/renewableenergy/).

3 Under a FIP, electricity producers receive a premium on top of the wholesale price.
To prevent under- and overcompensation, FIPs are typically combined with predeter-
mined price floors and caps or minimum and maximum levels of total remuneration.
Alternatively, floating FIPs are used. Here, the total remuneration is fixed at a “strike
price” if a predefined benchmark for market revenues is reached.
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Over the last three decades, wind-power technology has made
substantial progress, resulting in significant cost reductions.
Estimating learning curves between 1981 and 2004, Nemet (2009)
finds a progress ratio of 89%. Cost reductions were driven mainly by
economies of scale, the development of new technology concepts and
materials, and the standardisation and automation of manufacturing
processes. For example, over the last two decades, the capacity of a
standard turbine increased by a factor of ten.

3.2. Empirical analysis

We employ panel econometrics to estimate the impact of policy and
other factors on patenting, relying on a time series of cross-sectional
data for twelve OECD countries: Austria (AT), Denmark (DK), France
(FR), Germany (DE), Italy (IT), Japan (JP), the Netherlands (NE),
Spain (SP), Sweden (SE), Switzerland (CH), the United Kingdom (UK)
and the United States (US). Country choice was motivated by their
importance for patenting in wind-power technologies, as well as data
availability. Our sample includes countries with relatively low patent-
ing such as Switzerland or Austria and also countries such as Denmark
and Germany with relatively high patenting. In total, the countries
included in our sample account for 75–90% of global wind-power
patents in any given year. Of the countries which have very recently
become more relevant for wind power patenting, only China and Korea
are missing from our sample.

3.2.1. Dependent variable
Although extensively employed in the empirical literature, using

patent data to reflect innovation has been critically discussed (Pavitt,
1985; Griliches, 1990; Archibugi and Pianta, 1996; Jaffe and
Trajtenberg, 2002; Nagaoka et al., 2010). Patents incorporate informa-
tion on relevant aspects of the innovative process, but not all of the
generated innovation is actually patented. Patents can only capture
codified knowledge but cannot capture tacit knowledge. In addition,
inventors may protect their technological innovations using other
methods such as secrecy or lead time (e.g. Hall et al., 2014). Also,
patents may not adequately reflect commercial value and frequently fail
to yield significant value to their owners (Harhoff et al., 1999). For
example, companies may use patents to prevent competitors from
patenting related inventions, or to avoid law suits (Cohen et al., 2000).
However, since alternative appropriate data (e.g. private R &D on
wind-power technologies) are often lacking, patent information is often
the only available option. In this sense, we follow the thrust of the
empirical literature and use the number of patents (patents) as the
dependent variable for the econometric panel estimation.

Among renewable energy technologies, wind-power technologies
are particularly well classified: they form the patent sub-class F03D.
This sub-class comprises mechanisms for converting the energy of
wind into useful mechanical power: (i) wind motors with rotation axis
substantially parallel to the flow of air entering the machine; (ii) wind
motors with rotation axis substantially at a right angle to the flow of air
entering the machine; (iii) other wind motors; (iv) controlling wind
motors; (v) adaptations of wind motors for special use; (vi) combina-
tions of wind motors with apparatus driven thereby; and (vii) other
details, component parts, or accessories of wind motors. Thus, F03D
relates to the main focus of wind power plants such as motors, masts
and rotors, but does not cover the electrical power generation or
distribution aspects of wind power plants.4 Furthermore, we do not
include off-shore wind technologies, since they have become prominent
only recently.

The patent data refers to patent applications and country assignment
based on the country where the inventor lives rather than at the location of
the headquarters of the company filing the patent. Thus, the data likely
indicates the country where the new knowledge has been acquired. Patent
data is collected relying on the transnational patent approach described by
Frietsch and Schmoch (2010).5 Accordingly, we count all patent applica-
tions filed under the Patent Cooperation Treaty (PCT), independent of
whether they are transferred to EPO or not. Furthermore, we take EPO
applications into account. To avoid double counting, we only count the
direct EPO applications without precursor PCT application. Thus, all patent
families with at least a PCT application or an EPO application are taken into
account.6 The data was retrieved from the Questel database (www.questel.
com) using the International Patent Classification (IPC). A total of 6527
patents were identified for the time period 1991–2011. The data indicate a
strong increase in total patenting of wind-power technologies over that
period (see Fig. 1 and also Annex Table A1). Until 1998, patenting was
relatively low. The average number of patents per country was between 1
and 2 for the first years of the time period considered. It then started to
increase, in particular in the USA, Denmark, and Germany. After 2005,
patenting also took off in Japan, the UK, and Spain.7 In sum, patenting
activity increased in all twelve countries since the early 1990s, but the levels
and the development of patents differs across countries.

3.2.2. Explanatory variables
We include public R &D expenditures for wind-power technologies

(see Table 1).8As a supply side policy r & d is expected to increase
patenting activity. We further include a dummy variable, FIT, which
takes on the value of one if a FIT was in place in a specific year.9

Similarly, NOFIT is equal to one if other-than-FIT support mechanisms
were implemented. Practically, NOFIT mostly means quota systems
with TGCs.10 FIT and NOFIT only capture differences in the types of
support mechanisms, but not in the support levels.11 Both, FIT and
NOFIT reflect domestic demand-side policies and should be positively
related with patenting. Since FIT is thought to provide higher invest-
ment security than other support measures, and because it might
enable higher supply of resources, the effect of FIT should be larger
than of NOFIT. We include the export volume of wind-power technol-

4 Employing an alternative retrieval methodology, we additionally allow for a more
comprehensive classification of wind power technologies, which also includes patents
related to the electric and electronic components of wind power technology, for example.
Further details and results are reported in Section 4 under the subheading “robustness
checks”.

5 In general, the choice of patent offices from which patent applications are taken
matters. Since patents are also a means to protect markets, there is a country bias in
favour of domestic applicants. To address this country bias, the triadic patent approach
was developed in the 1990s. This approach only considers patents which are simulta-
neously applied for at the EPO, USPTO and JPO. As a drawback, however, it does not
allow analysing patent applications before 2001, since until then the USPTO only
published data for the patents granted, i.e. not for all the patents applied for. In addition,
for countries other than Japan, the outcome under the triadic approach is de facto
defined by the application at the JPO. In light of the low relevance of Japan as a
destination of wind turbine exports for the period covered in this study, the triadic patent
approach does not appear appropriate for our study.

6 Frietsch and Schmoch (2010) conclude that this transnational approach provides
larger samples than the Triadic approach for the analysis of specific fields and is highly
capable of reliably capturing the relations between different countries.

7 In 2003, the last year in the analysis by Johnstone et al. (2010), the average number
of patents is 20 (for the 12 OECD countries in our sample). By 2011, the last year in our
analysis, this figure has increased to 100.

8 Private R &D expenditures for wind power technologies could not be included due to
lack of data. To the extent that private R &D efforts are correlated with explanatory
variables in the model, the estimated coefficients may suffer from an omitted variable
bias.

9 FIT also equals one if a FIP was in place in Spain (from 2007 on) or Denmark (from
2009 on), since the incentives of these FIPs for investors are similar to those of FITs. For
similar reasons, FIT was set to one when a PTC was in place in the USA. This approach is
supported, among others, by May (2015).

10 Other support mechanisms were implemented for a few years only, and did not
justify including a separate variable. For example, the UK had a tender system for
renewable wind power for five years only 1997–2001).

11 Similar to Johnstone et al. (2010), we abstract from the fact that policies may be
implemented or adjusted in response to patenting activity (e.g. Downing and White,
1986). Policy endogeneity is difficult to address in the given context, in particular since
there is not much variation in the variables capturing support mechanisms. We further
explore policy endogeneity in the sub-section on robustness checks.
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ogies (export), which is meant to roughly capture the impact of export
demand (e.g. via foreign support mechanisms) on domestic patent
activity. Export is expected to be positively related with patenting.

Similar to Costantini et al. (2015), learning effects (are assumed to be
captured by the cumulative capacity of wind power installed in a particular
country (windcap). If domestically installed capacity is also generated by
domestic producers, learning effects especially relate to economies of
experience on the production side and to user-producer interactions.
Furthermore, knowledge obtained from experience with imported wind
turbines might spill over to other domestic technology providers. Since the
effects of the capacity installed in a particular year are likely to fade over
time, we follow the empirical literature and apply an annual decay rate. We
use a rate of 10%, which is in the range of rates typically employed for the
depreciation of the knowledge stock.

To reflect a country's innovative capacity, we follow Costantini et al.
(2015) and include the number of total patents (net of patents for RES) per
capita (patents_all_pc). Patents_all_pc may also account for cultural
differences across countries concerning the propensity to patent. Thus,
patents_all_pc should be positively related with patenting.

The legitimacy of technology has been empirically analyzed in case
studies by looking at the increase in interest groups, lobbying activities, and
debates in parliament and the media (Bergek et al., 2008a; Hekkert and
Negro, 2009). There is no single indicator available which covers all of these
aspects across countries over time. As a proxy for the legitimacy of
technology, we include the share of votes for green parties at national level
during the most recent election (greenvote). To be considered a green
party, it had to be a member of the Global Greens, the European Green
Party or the parliamentary group of the Greens in the European
Parliament. The share of green party voters is supposed to reflect the
social acceptance of renewable energy technologies in the eyes of the
relevant stakeholders. Green party programmes typically foresee, as a core
element, a strong increase in renewable electricity. Competition for voters
also means that other parties may adjust their programmes to adopt green
issues if these attract voters. Voter support for a green party is therefore
assumed to be positively correlated with support for an energy transition in
a country.12 Thus, greenvote primarily relates to one aspect of legitimacy:
the power to change existing rules and institutions, e.g. via the ability to

influence public policy (Hekkert and Negro, 2009).
To capture factors of innovation which feature prominently in the

policy analysis literature, and which are also linked to innovation
functions, we construct two variables (see also Annex Table A2). First,
target takes the value of one if a national target is in place for electricity
generated from wind power or from renewable energies in general. For
example, Germany was the first of the sample countries to introduce
targets for wind in 1989, i.e. installing 250 MW between 1989 and
1996. The federal German Renewable Energy Act, which came into
force in 2000, aimed at doubling the electricity generated by RES until
the year 2010. Similarly, in 1996, Japan implemented legislation
aiming to have 3 GW of wind power installed by 2010. In 2003,
Japan then introduced the target for 16 TWh to be generated by all
RES in 2014. In the US, individual states introduced RPSs in the
1990s. For the US, target was set to one, if states accounting for more
than half the US population had targets in place. This was the case
since 2004. Such an official target signals that the technology is seen as
very important. Target is expected to increase patenting activity.
Second, and somewhat more exploratively, we attempt to capture the
impact of the stability of the regulatory framework. To do so we
construct stability, which equals one if there is a stable regulatory
framework in place and a supportive regulatory framework exists (e.g.
provisions for integration of power from RES into the grid, building
codes, standards) and if there are information and education pro-
grammes in place. For the US, for example, the short duration and fast
changes in legislation led to a score of zero for most of the 1990s. The
federal PTCs were extended several times for only two additional years,
and by a narrow margin of votes (Bird et al., 2005). In the UK,
legislation governing wind energy started relatively late. A renewable
obligation plan has existed since 2000 (updated in 2002). In 2001, a
climate change levy was introduced, which is still in place. From 2002
on, when the offshore wind capital grants scheme and the renewable
obligations were introduced (both are still in place), the regulatory
framework in the UK was judged to be stable.13 Denmark started to
foster RES in the mid-1970s, passed the Electricity Supply Act in 1976
(still in place), implemented a technical certification scheme for the
design, manufacture and installation of wind turbines during the
1980s, and passed the green tax package in 1995. Stability of the
regulatory framework in Denmark was deemed to be further strength-

Fig. 1. Annual transnational patents in wind-power technology for twelve OECD countries.

12 By choosing country-level measures to reflect legitimacy, we ignore that legitimacy
may also materialize at the regional or local level, in particular for wind power (e.g.
Spiess et al., 2015). Detrimental effects of wind power at the local level may include noise
disturbance or visual impact on the landscape. On the benefit side, wind power may boost
local employment.

13 A detailed description of the country-specific assessment and the sources used is
beyond the scope of this paper, but is available from the authors upon request.
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ened by the wind energy co-operative tax incentive of 1997 and the
offshore wind agreement in 1998. But the regulatory framework
became unstable in the wake of liberalization of the energy markets
in the late 1990s and the change in government in 2001. In particular,
legislation was passed in 1999 foreseeing a switch from a FIT-type
support system to a TGC system, with a transition period to 2005. In
2004, however, new legislation was passed which introduced FITs, a
replacement scheme for on-shore wind turbines (still in place), and a
long-term energy strategy.14 Stability should be positively related with
patenting in wind-power technologies.

3.2.3. Control variables
Following the literature (e.g. Johnstone et al., 2010; Nicolli and

Vona, 2016), we include the price of electricity (powerprice). As
pointed out by the induced innovation literature (e.g. Popp, 2002),
an increase in the price of electricity is expected to amplify the
incentives for innovation in renewable energies. This may be because
the remuneration for renewable electricity is tied to the power price (as
was the case in Germany until 2000, for example). Likewise, technology
providers may interpret increasing electricity prices as a signal for the
higher profitability of their products in the future. The data on end-use
prices provided by the IEA include excise taxes as well as other taxes
and surcharges such as municipal taxes, and surcharges for renewable
energy and combined heat and power. Thus, powerprice may also
capture the effect of support mechanisms for RES (policy-induced
innovation). Similarly, end-users’ electricity prices may also include
energy and environmental taxes or the costs of greenhouse gas
certificates (e.g. for allowances in the EU Emissions trading systems
since 2005). In this sense, powerprice also reflects the stringency of
environmental regulation.15

Finally, we include the number of patents in RES technologies (net
of patents for wind-power technologies) to control for changes in the
propensity to patent in RES over time and across countries.16 To
calculate patents_reg, we use patents for solar energy (including
photovoltaic and concentrated solar thermal power), ocean energy
(including tidal and wave energy and salinity gradient power), biofuels
(including liquids, solids and biogases), geothermal (including hydro-
thermal and hot, dry rock resources), and hydroelectricity (including
large and small hydroelectricity).17 Together with wind power, these
RES also form the patent class Y02E 10/00. Patents_reg dominated by
photovoltaic patents (IPC class H01L-03).

Table 1 provides an overview of the variables, references to the data
sources and expected signs in the econometric analysis. It also includes
a column indicating which of the SI functions of innovation the policy
variables and factors are supposed to address. The descriptive statistics
of the dependent and explanatory variables (in levels) appear in
Table 2.

3.2.4. Econometric model
To analyse the factors driving innovation activity in wind-power

technologies, we employ a similar panel econometrics model as
previous studies:

patents constant β r d β FIT β NOFIT

β export β windcap β patentsallpc

β greenvote β target β stability

β powerprice β patentsreg α ε

= + & + +

+ + +

+ + +

+ + + +

i t i t i t i t

i t i t i t

i t i t i t

i t i t i i t

, 1 , −1 2 , −1 3 , −1

4 , −1 5 , −1 6 ,

7 , −1 8 , −1 9 , −1

10 , −1 11 , , (1)

where I = 1,…,12 indexes the cross-sectional units (countries) and
t = 1991,…, 2011 indexes time; αi represents an unobserved country-
specific effect, and εi t, is the usual idiosyncratic error term. The
coefficient βi may be interpreted as a semi-elasticity. If variable i
increases by one unit, β100* i is the percentage change in the mean
number of patents. In the estimated specification, most explanatory
variables enter with a lag of one period, recognizing that companies
take time to mobilize the resources to respond to policy and market
factors.18 Lagging explanatory variables is also expected to reduce
potential endogeneity problems related to the policy variables. Since
patents_reg is supposed to control for general trends in the propensity
to patent for renewables, it is not lagged.

As is common in patent analysis (Hausman et al., 1984; Hall et al.,
1986), we use a negative binomial model to reflect the count nature of
the dependent variable.19

Compared to a purely cross-sectional analysis, a panel analysis
allows for more general heterogeneity across countries. In particular,
omitted country characteristics which affect a country's propensity to
patent and which are correlated with other regressors do not result in
inconsistent parameter estimates in panel data models as long as these
unobserved effects (i.e. αi in Eq. (1)) are roughly constant over the
period in question. Like Nesta et al. (2014), Costantini et al. (2015), or
Nicolli and Vona (2016), we employ a fixed-effects estimator to
estimate Eq. (1). The fixed effects estimator uses variation within
countries (i.e. deviation of variables from country means). In our
estimations of Eq. (1), all variables are transformed into the natural
logarithm except for the dummy variables, greenvote and the count
variables.20 Thus, the coefficients for the log-transformed variables
may be interpreted as elasticities, the coefficients for the dummies and
for patentsall as semi-elasticities.

Table 2
Descriptive statistics of dependent and explanatory variables (1991–2011).

Variable Unit Obs. Mean SD Min Max

patents count 252 25.90 49.94 0.00 284
r & d million $2013 250 13.81 20.23 0.19 197.21
FIT dummy 252 0.47 0.50 0.00 1.00
NOFIT dummy 252 0.24 0.43 0.00 1.00
export 10e9 $2013 252 0.14 0.37 0.00 2.20
windcap GW 252 1.89 4.10 0.00 30.14
patents_all_pc per million

inhabitants
252 204.19 132.57 8.34 651.29

greenvote percent 252 4.27 3.51 0.00 13.04
target dummy 252 0.62 0.49 0.00 1.00
stability dummy 252 0.51 0.50 0.00 1.00
powerprice US 2013$/MWh 252 190.11 54.89 94.20 387.88
patents_reg count 252 89.24 165.89 0.00 1061

14 Typically, target setting precedes the implementation of other supportive measures,
but this is not necessarily the case. One example of a case where a stable regulatory
framework existed without an official target was Germany during the late 1990s. No
formal government target existed at that time but the so called “Stromeinspeisegesetz”
provided a stable regulatory framework (combined with a feed-in type support system).

15 For the nine EU Member States in our data set, end-use prices without taxes and
levies were available from Eurostat. Additional analyses for the restricted sample using
these prices corroborate the findings reported in Section 4. We provide more details on
this additional analysis in the subsection on robustness checks.

16 Johnstone et al. (2010) use patents across all technologies (not just RES) as a
control variable. Thus, our specification allows distinguishing between the general
technological capacity of a country (patents_all_pc) and cyclical effects over time which
are specific to the RES domain (patents_reg).

17 We generally used IPC. For technologies, where IPC is too broad (e.g. biofuels), we
combined IPC with key words.

18 This specification follows, among others, Hall et al. (1986) and Costantini et al.
(2015). In Johnstone et al. (2010), the explanatory variables are entered without lags,
implying that patenting activities respond instantaneously to market and policy signals.
We report the results of alternative lag structures in the sub-section on robustness
checks. Allowing different lag structures also helps to capture the potential effects of
reverse causality.

19 Unlike a Poisson model, the negative binomial model does not assume that the
conditional mean is equal to the conditional variance (equidispersion). The conditional
probability function of the negative binomial models includes an additional term
reflecting unobserved heterogeneity, which is assumed to follow a gamma distribution.

20 Since the natural log of zero is not defined, we set the data to a small number
(0.00001) when windcap or r & d was zero. This was the case for a total of 13
observations. Results were virtually the same when these observations were dropped.
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4. Results

Table 3 displays the results from estimating Eq. (1) via maximum
likelihood methods. We first note that the findings support most of our
predictions.21 The coefficients of r & d, windcap, patents_all_pc,
greenvote, target, stability and patents_reg exhibit the expected
positive sign and are statistically significant.22

The findings for our supply-push policy, r & d, are similar to
Johnstone et al. (2010), Dechezleprêtre and Glachant (2013) and
Nicolli and Vona (2016). The point estimate of the coefficient suggests
that an increase in public R &D for wind technologies by 1% is
associated with, on average, about 2.5 more patents in the following
year (0.0925*27.1623).

Turning to the domestic demand-pull policy design, we find that
FIT and NOFIT exhibit a negative sign, but are not statistically
significant. The result for FIT is consistent with Johnstone et al.
(2010), but for a more updated sample, and a much richer set of
explanatory and control variables. This finding is also consistent with
Nicolli and Vona (2016), but for different countries and explanatory
and control variables. While consistent with the previous econometric
work, the findings for FIT are not consistent with the thrust of the case
study analyses. Arguably, the dummy variable employed to reflect the
impact of FITs in our econometric analysis does not adequately capture
design features which are relevant for patenting activities such as the
duration or level of support (the stringency), or digression in FIT rates.
Thus, similar to the results for the effectiveness of support schemes on
the deployment of renewable electricity (IEA, 2008), the innovation

effects of support schemes are as likely to depend on these design
features as on the specific instrument applied (Ragwitz et al., 2007;
Davies and Diaz-Rainey, 2011). Finally, del Río Gonzáles et al. (2014)
note that FITs in EU Member States have been associated with lower
levels of support than other instruments, implying lower financial
incentives to innovate.

Unlike predicted, our proxy for foreign demand-pull is not found to
be statistically significant. Arguably, export only coarsely captures the
effects of foreign regulation on domestic patenting. This insignificant
result may further be explained by the dominant role of domestic
markets in almost all countries. Before 2000, only Denmark exhibited
considerable exports in the order of magnitude of three-digit level of
million $ per year, amounting to roughly 90% of world exports.
Germany was a distant second with roughly 5% of world trade share.
Similarly, Dechezleprêtre and Glachant (2013) argue that the effects of
foreign policies on patenting activity in wind-power technologies are
dwarfed by domestic policies.

Similar to Costantini et al. (2015) for biofuel technologies, the
findings for windcap and patents_all_pc support our predictions that
innovation activity in wind-power technologies is positively related
with learning effects and a country's innovative capacity. Increasing the
installed wind capacity by 1% raises the mean number of patents in
wind technologies by about 3.6 in the following year. However, our
results do not suggest which of the various effects which link diffusion
of technology to innovation activity is responsible for this result. This
will be a research task taken up by future work, perhaps using other
methodologies than econometrics (e.g. case studies using an event
history approach).

The estimation results for greenvote support our prediction that a
higher legitimacy of technology spurs patenting activity. An increase in
the share of green voters by one percentage point changes the mean
number of wind patents by 5.8% (exp(0.0561)−1), i.e. by 1.6 patents.

Finally, our findings for target and stability imply that target
setting and stability of the regulatory framework are conducive to
patenting in wind-power technologies. The existence of a wind energy
target increases the mean number of patents by about 56%, i.e. by
about 15 patents. Similarly, a stable policy environment raises the
mean number of patents by about 71%, i.e. by about 19 patents.

Turning to the control variables, the coefficient for powerprice is
positive but not statistically significant, which is similar to Johnstone
et al. (2010). As expected, patenting activity in other renewable
electricity technologies (patents_reg) is positively and statistically
significantly related with patenting in wind-power technologies. One
more patent in non-wind renewable energy technologies leads to an
increase in the mean number of wind patents by about 0.2%
(exp(0.00187)−1) or 0.05 patents.

In sum, most of our results confirm the relevance of supply-side and
demand-side factors for patenting in wind-power technologies.
Extending the existing empirical literature to more explicitly and more
comprehensively account for factors identified by the SI and policy
analysis literatures provides additional insights. Similar to Costantini
et al. (2015) for biofuels, we find learning effects and a country's
innovation capacity to be positively related with patenting in wind
technologies. In addition though, we observe such a positive relation
also for the share of green party votes, i.e. our proxy for the legitimacy
of technology. Moreover, target setting and the stability of the
regulatory framework turned out to be significantly correlated with
patenting activity in wind-power technologies. Thus, our econometric
results generally support and complement the insights from the
conceptual and predominantly case-study based system of innovation
and policy analysis literature on the factors driving innovation activ-
ities.

4.1. Caveats

While our analysis includes a more comprehensive set of factors

Table 3
Results for negative binomial fixed-effects estimator (standard errors in parentheses).

r & d (t−1) 0.135 ***
(0.0427)

FIT (t−1) −0.186
(0.157)

NOFIT (t−1) −0.137
(0.192)

export(t−1) 0.00371
(0.0214)

windcap(t−1) 0.0885 **
(0.0346)

patents_all_pc (t−1) 0.507 ***
(0.157)

greenvote (t−1) 0.0670 ***
(0.0247)

target (t−1) 0.563 ***
(0.129)

stability (t−1) 0.714 ***
(0.116)

powerprice (t−1) 0.342
(0.287)

patents_reg (t) 0.00187 ***
(0.000220)

Constant 2.557
(2.209)

Log likelihood −688.9
Sample size 238

** indicates individual significance in two-tailed t-test at p=5%.
*** indicates individual significance in two-tailed t-test at p=1%.

21 To assess whether collinearity may be a problem, variance inflation factors (VIF)
were calculated (by regressing patents on the set of explanatory variables in Table 3). The
average VIF is 2.14 and all VIFs are below 3. In light of the standard cut-off point of 10,
the variables do not appear to be highly inter-correlated.

22 For the remainder of this section “statistically significant” means p-value ≤ 0.1.
23 27.16 is the mean patent count of the observations used in the analysis. This figure

is slightly higher than the mean reported in Table 1 because lagging of explanatory
variables implies that data on patents for 1991 is not used. Since patent activity in 1991
was lower than in subsequent years, the mean patent count increases if observations for
1991 are dropped.
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than previous studies, not all factors that might affect innovation in
wind-power technologies could be included. Notably, due to the lack of
data, we could not explore the role of competition among technology
providers. In addition, our analysis of policy stability was rather
exploratory and the indicator employed may only be a crude proxy.
Our indicator may not properly reflect market regulation (e.g. condi-
tions for access to the grid for electricity from renewables), the
availability and quality of the grid infrastructure, the effects of
permitting and planning procedures, or zoning laws. Our econometric
analysis may also not adequately capture the dynamic nature of
innovation systems and their differential impacts on innovation,
including leader-follower relations across countries (e.g. Bento and
Fontes, 2015). Finally, in contrast to the way it was modelled in this
study, the role of policy stability (and support scheme type) in
innovation may depend on the life cycle of the technology (e.g.
Huenteler et al., 2016). For example, the stability of the regulatory
framework (and remuneration) may be more relevant when a technol-
ogy is less mature.

4.2. Robustness checks24

To verify the robustness of the results presented in Table 3, we
tested a series of alternative model specifications and also allowed for
an alternative classification of wind technology patents. First, we also
estimated Eq. (1) using the Poisson specification. In general, the results
are quite consistent with the findings for the negative binomial models.
Unlike the negative binomial model though, the coefficient associated
with NOFIT was negative and statistically significant at p < 0.01, the
coefficient associated with export was positive and statistically sig-
nificant at p < 0.01. Inappropriate use of the Poisson model means,
however, that standard errors and p-values are too low, thus over-
stating the significance of the parameters. A standard likelihood-ratio
test, provided evidence in favour of the negative binomial model and
against the Poisson model at p < 0.01).

Second, the fixed effects estimator for negative binomial models as
developed by Hausman et al. (1984) and implemented in the Stata
xtnbreg command, has been criticized for its lack of controlling for all
stable covariates when maximizing the conditional likelihood (Allison
and Waterman, 2002; Greene, 2005). We therefore use the uncondi-
tional FE negative binomial estimator by including dummy variables
for all countries. This also allows calculating robust and cluster robust
standard errors. The results were very similar to those presented in
Table 3. Qualitatively, noticeable differences were found for power-
price, which was found to be positively and statistically significantly
related to patenting. In addition, employing the generalized Poisson
model, which allows for under- and overdispersion, we qualitatively
found very similar results as the unconditional FE negative binomial
model.

Third, we also explored the effects of different lag structures for the
explanatory variables. Lagging powerprice by two rather than one year
renders powerprice statistically significant in all models. The findings
for the other variables were similar to those reported in Table 3. As
expected though, the loss in degrees of freedom negatively affected the
p-values of most parameter estimates. Lagging all explanatory vari-
ables by one or by two years more than specified in Eq. (1) yielded
similar results to those presented in Table 3. Probably because of lower
degrees of freedom, the coefficients associated with R&D and green-
vote were no longer statistically significant in both additional analyses.

Fourth, to further address concerns about policy endogeneity, we
also employed future (rather than past) policies as explanatory vari-
ables and then explored whether the parameters estimated in Eq. (1)
differ. The results for all parameter estimates and significance levels are
very similar to those reported in Table 3. These findings provide no

evidence that our results may suffer from endogeneity or reverse
causality.

Fifth, since powerprice also includes taxes and levies, this variable
may not adequately reflect the investment incentives for suppliers.
Using wholesale electricity prices may therefore be preferable. We
could not find data on wholesale electricity prices for the time frame of
our study for the 12 countries in our sample. Instead, we estimated the
model for the nine EU countries only, using the end-use prices without
taxes and levies available from Eurostat. The findings for this restricted
sample are very similar to those reported in Table 3 for the full sample
of countries, i.e. the coefficients of r & d, windcap, greenvote, target,
stability and patents_reg turn out to be statistically significant. In
addition, the coefficient associated with powerprice becomes statisti-
cally significant.

Sixth, since there was some discretion on the side of the authors
when constructing stability, we also estimated Eq. (1) excluding
stability. We find that excluding stability barely affects the findings.

Seventh, we used the stock of past patents in wind technologies
rather than the total patents per capita to reflect a country's innovation
capacity.25 Arguably, the former may more adequately reflect sector-
specific effects such as wind technology suppliers’ learning-by-invent-
ing. Since the effects of patents in the past are likely to fade over time,
we depreciate the knowledge stock at a rate of 10%. For this alternative
specification, we found the knowledge stock to be positively related to
patenting (p < 0.01). The findings for the other variables were virtually
the same as those presented in Table 3, although the values of the
Bayesian and Akaike information criteria (BIC and AIC) were some-
what higher, thus supporting the use of total patents per capita rather
than the stock of past patents in wind technologies.

Finally, we conducted a new patent search to consider a broader set
of wind-power technologies. Instead of F03D, we used patent class
Y02E10/70 and sub-classes. In contrast to F03D, this new classifica-
tion also includes additional patents related to the electric and
electronic components of wind-power technology, for example. The
class Y02E10/70 contains all patents considered wind energy patents
by the patent office and should therefore comprehensively cover wind-
power technologies. For AT, CH, DE, ES, IT, and SE, this new
classification resulted in a total patent count for the period considered,
which was at most 10% higher than for the F03D classification. The
largest increase is observed for the UK (+20%), France and the US
(+28% each). Results from estimating Eq. (1) for this alternative
classification of wind-power technologies are qualitatively identical to
those presented in Table 3. Hence our findings are robust to this
alternative, more comprehensive classification of the technologies
underlying the dependent variable.

5. Conclusions and policy implications

The results of our econometric analysis of international patents in
wind-power technologies using a panel of twelve OECD countries over
a period of more than two decades generally supported the predictions
derived within the comprehensive functions of innovation framework.
Additional to traditional supply-side and demand-side factors, this
framework also comprises factors identified by the SI and policy
analysis literatures. Our findings are robust to a series of different
model specifications, distributional assumptions and alternative clas-
sifications of wind-power technologies in the patent search. They also
provide insights for policy making.

Similar to the scant empirical literature on innovation in RES
technologies, patenting activity was found to be positively related with
public R &D spending on wind-power technologies and learning effects

24 All results not shown to save space are available from the authors.

25 To capture capacity, Costantini et al. (2015) also considered the stock of past
patents of their dependent variable, but also prefer a specification with total patents per
capita based on the BIC.
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(as proxied by the stock of wind power capacity). Thus, increasing the
level of public R &D spending and designing policies to increase the
diffusion of RES appear to be important policies for increasing
innovation.

On the one hand, our empirical results do not support the view that
the effects of feed-in-tariffs on patenting activities differ from those of
other support mechanisms (notably tradable green certificates). On the
other hand, we find strong evidence that the policy process affects
innovation. Notably, patenting in wind power is positively related to
the presence of production or capacity targets for wind power. We
further observed that a more stable policy environment is favourable
for patenting. Thus, our findings support the view that providing a
long-term, stable regulatory framework is more relevant for patenting
in wind-power technologies than the actual type of support scheme
applied. Such support schemes may even be detrimental if embedded
in an unstable regulatory framework such as the stop-and-go cycles in
the US federal PTC, or the frequent changes to the Dutch FIT support
system. Together with the results for learning effects, our findings for
target setting and stability of the regulatory framework emphasise the
importance of a strong domestic market based on a stable regulatory
framework for patenting in wind-power technologies. The current
discussion about the future support for renewable electricity in the
EU beyond 2020 revolves around the need for national targets and
support schemes in particular for mature technologies like wind
onshore (Held et al., 2015). In light of this debate, we conclude that
Member States’ commitments to credible wind power expansion
trajectories as an integral part of their energy and climate plans would
be conducive to innovation.

With regard to broader factors which cannot be influenced by
domestic RES policies, we found that patenting is positively related to a
country's innovation capacity (either measured as patents per capita or
as stock of past patents in wind technologies) and to share of green
party votes (as a proxy for aspects of political economy and the ability
to change existing rules and institutions). In contrast to our prediction,
export demand did not exhibit a statistically significant effect on

patenting in most models estimated. Arguably, in light of the ongoing
globalisation of renewable technology markets, foreign demand-pull
factors will become more relevant for domestic innovation in RES
technologies in the future.

In some model specifications, patenting in wind power was also
positively related to electricity prices, in particular when lagged by two
years rather than one. Thus, it may take firms longer than implied in
the extant literature to respond to prices and mobilize the resources
leading to new patents. Finally, we found that the patenting of wind-
power technologies was positively associated with general patenting
activity in renewable energy technologies in a country. This may reflect
general country-specific tendency and trends to patent in renewable
technologies, or positive innovation spillovers across different RES
technologies.

Finally, our general findings on the role of policies for innovation in
wind-power technologies in OECD countries also provide insights for
policy design in countries such as China or India, which are striving to
become leading renewable energy technology providers. Our results
suggest that traditional supply-side and demand-side policies will be
effective for building up domestic innovation capabilities in these
technologies, especially if they are combined with policies which
strengthen the innovative capacity of the country and set clear targets
in stable policy environments.
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Annex A

Tables A1 and A2

Table A1
Descriptive statistics of dependent variable (number of patents) by country for 1991–2011.

Country Obs Mean Std. Dev. Min Max Total

US 21 55.38 72.01 4 225 1163
DE 21 86.14 89.00 2 284 1809
JP 21 28.71 38.79 0 129 603
FR 21 8.38 9.26 0 30 176
UK 21 19.76 26.61 0 91 415
IT 21 9.10 11.24 0 33 191
NL 21 10.90 11.81 0 35 229
CH 21 4.19 5.25 0 18 88
SE 21 6.29 7.18 0 24 132
AT 21 4.48 6.35 0 20 94
ES 21 20.67 29.13 0 103 434
DK 21 56.81 81.35 0 282 1193
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Values for the policy variables target (T) and stability (S).
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